Imposed work of breathing during high-frequency oscillatory ventilation: a bench study
نویسندگان
چکیده
INTRODUCTION The ventilator and the endotracheal tube impose additional workload in mechanically ventilated patients breathing spontaneously. The total work of breathing (WOB) includes elastic and resistive work. In a bench test we assessed the imposed WOB using 3100 A/3100 B SensorMedics high-frequency oscillatory ventilators. METHODS A computer-controlled piston-driven test lung was used to simulate a spontaneously breathing patient. The test lung was connected to a high-frequency oscillatory ventilation (HFOV) ventilator by an endotracheal tube. The inspiratory and expiratory airway flows and pressures at various places were sampled. The spontaneous breath rate and volume, tube size and ventilator settings were simulated as representative of the newborn to adult range. The fresh gas flow rate was set at a low and a high level. The imposed WOB was calculated using the Campbell diagram. RESULTS In the simulations for newborns (assumed body weight 3.5 kg) and infants (assumed body weight 10 kg) the imposed WOB (mean +/- standard deviation) was 0.22 +/- 0.07 and 0.87 +/- 0.25 J/l, respectively. Comparison of the imposed WOB in low and high fresh gas flow rate measurements yielded values of 1.63 +/- 0.32 and 0.96 +/- 0.24 J/l (P = 0.01) in small children (assumed body weight 25 kg), of 1.81 +/- 0.30 and 1.10 +/- 0.27 J/l (P < 0.001) in large children (assumed body weight 40 kg), and of 1.95 +/- 0.31 and 1.12 +/- 0.34 J/l (P < 0.01) in adults (assumed body weight 70 kg). High peak inspiratory flow and low fresh gas flow rate significantly increased the imposed WOB. Mean airway pressure in the breathing circuit decreased dramatically during spontaneous breathing, most markedly at the low fresh gas flow rate. This led to ventilator shut-off when the inspiratory flow exceeded the fresh gas flow. CONCLUSION Spontaneous breathing during HFOV resulted in considerable imposed WOB in pediatric and adult simulations, explaining the discomfort seen in those patients breathing spontaneously during HFOV. The level of imposed WOB was lower in the newborn and infant simulations, explaining why these patients tolerate spontaneous breathing during HFOV well. A high fresh gas flow rate reduced the imposed WOB. These findings suggest the need for a demand flow system based on patient need allowing spontaneous breathing during HFOV.
منابع مشابه
Unloading work of breathing during high-frequency oscillatory ventilation: a bench study
INTRODUCTION With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. METHODS An external g...
متن کاملSpontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury.
BACKGROUND Maintenance of spontaneous breathing is advocated in mechanical ventilation. This study evaluates the effect of spontaneous breathing on regional lung characteristics during high-frequency oscillatory (HFO) ventilation in an animal model of mild lung injury. METHODS Lung injury was induced by lavage with normal saline in eight pigs (weight range 47-64 kg). HFO ventilation was appli...
متن کاملThe impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.
BACKGROUND Small endotracheal tubes (ETTs) and neonatal ventilators can impact gas exchange, work of breathing, and lung-mechanics measurements in infants, by increasing the expiratory resistance (R(E)) to gas flow. METHODS We tested two each of the Babylog 8000plus, Avea, Carestation, and Servo-i ventilators. In the first phase of the study we evaluated (1) the imposed R(E) of an ETT and ven...
متن کاملThe Effect of Compliance Changes on Delivered Volumes in an Adult Patient Ventilated with High Frequency Oscillatory Ventilation: A Bench Model
The Effect of Compliance Changes on Delivered Tidal Volumes and Amplitude in an Adult Patient Ventilated with High Frequency Oscillatory Ventilation: A Bench Model By John A. England Clinical concerns exist regarding the delivered tidal volume (Vt) during highfrequency oscillatory ventilation (HFOV). HFOV is increasingly being used as a lung protective mode of ventilation for patients with Adul...
متن کاملHigh-frequency oscillatory ventilation as a rescue therapy for adult trauma patients.
BACKGROUND High-frequency oscillatory ventilation is an alternative ventilation mode that improves oxygenation in trauma patients in whom conventional ventilation strategies have been unsuccessful. OBJECTIVE To evaluate the effect of high-frequency oscillatory ventilation on oxygenation, survival, and parameters predictive of survival in trauma patients. METHODS A retrospective case series ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical Care
دوره 10 شماره
صفحات -
تاریخ انتشار 2006